Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.04.11.23288372

ABSTRACT

Background: The mechanism for anaphylaxis following mRNA COVID-19 vaccination has been widely debated; understanding this serious adverse event is important for future vaccines of similar design. A mechanism proposed is type I hypersensitivity (i.e., IgE-mediated mast cell degranulation) to excipient polyethylene glycol (PEG). Using an assay that, uniquely, had been previously assessed in patients with anaphylaxis to PEG, our objective was to compare anti-PEG IgE in serum from mRNA COVID-19 vaccine anaphylaxis case-patients and persons vaccinated without allergic reactions. Secondarily, we compared anti-PEG IgG and IgM to assess alternative mechanisms. Methods: Selected anaphylaxis case-patients reported to U.S. Vaccine Adverse Event Reporting System December 14, 2020 - March 25, 2021 were invited to provide a serum sample. mRNA COVID-19 vaccine study participants with residual serum and no allergic reaction post-vaccination ("controls") were frequency matched to cases 3:1 on vaccine and dose number, sex and 10-year age category. Anti-PEG IgE was measured using a dual cytometric bead assay. Anti-PEG IgG and IgM were measured using two different assays. Laboratorians were blinded to case/control status. Results: All 20 case-patients were women; 17 had anaphylaxis after dose 1, 3 after dose 2. Thirteen (65%) were hospitalized and 7 (35%) were intubated. Time from vaccination to serum collection was longer for case-patients vs controls (post-dose 1: median 105 vs 21 days). Among Moderna recipients, anti-PEG IgE was detected in 1 of 10 (10%) case-patients vs 8 of 30 (27%) controls (p=0.40); among Pfizer-BioNTech recipients, it was detected in 0 of 10 case-patients (0%) vs 1 of 30 (3%) controls (p>0.99). Anti-PEG IgE quantitative signals followed this same pattern. Neither anti-PEG IgG nor IgM was associated with case status with both assay formats. Conclusion: Our results support that anti-PEG IgE is not a predominant mechanism for anaphylaxis post-mRNA COVID-19 vaccination.


Subject(s)
Hypersensitivity, Immediate , Drug Hypersensitivity , COVID-19 , Anaphylaxis
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.21.21252168

ABSTRACT

Neutralizing antibodies to the SARS CoV-2 spike proteins have been issued Emergency Use Authorizations and are a likely mechanism of vaccines to prevent COVID-19. However, benefit of treatment with monoclonal antibodies has only been observed in clinical trials in outpatients with mild to moderate COVID-19 but not in patients who are hospitalized and/or have advanced disease. To address this observation, we evaluated the timing of anti SARS-CoV-2 antibody production in hospitalized patients with the use of a highly sensitive multiplexed bead-based immunoassay allowing for early detection of antibodies to SARS-CoV-2. We found that significantly lower levels of antibodies to the SARS-CoV-2 spike protein in the first week after symptom onset were associated with patients who expired as compared to patients who were discharged. We also developed a model, based on antibody level trajectory, to predict COVID 19 outcome that is compatible with greater antibody benefit earlier in COVID 19 disease. Author SummaryWe evaluated antibodies to SARS-CoV-2 over time in patients that were hospitalized with COVID 19. Early detection of Anti-SARS-CoV-2 antibodies was associated with survival in patients hospitalized with COVID 19. Early antibody levels predicted outcome in our study. This result is consistent with the benefit of therapeutic antibodies early in the course of COVID 19 disease. With additional study, early antibody levels may be helpful in deciding on appropriate therapies.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL